A NEW BANACH SPACE WITH VALDIVIA DUAL UNIT BALL

BY

ONDREJ F. K. KALENDA*

Department of Mathematical Analysis, Faculty of Mathematics and Physics Charles University, Sokolovskd 83, 186 75 Praha 8, Czech Republic e-mail: kalenda@karlin.mff.cuni.cz

ABSTRACT

We give an example of a Banach space which admits no projectional resolution of the identity but whose dual unit ball in weak* topology is a Valdivia compact. This answers a question asked by M. Fabian, G. Godefroy and V. Zizler.

1. Introduction

Projectional resolutions of the identity are a powerful tool in studying the structure of non-separable Banach spaces. They were introduced by J. Lindenstrauss [L1], [L2] in the 1960s. Their importance became clear after the famous paper [AL], where it is proved that each weakly compactly generated Banach space admits a projectional resolution. Later, this result was extended to several larger classes of spaces. These classes can be defined by topological properties of the dual unit ball equipped with the weak* topology. So, if the dual unit ball of X is an Eberlein compactum or, more generally, a Corson compactum, X admits a projectional resolution [V1], [V3]. Since [AMN], a generalization of Corson compacta has been studied [V2], IV3]; this class was given the name of Valdivia compacta in $[DG]$. The natural question arose — whether a Banach space with

^{*} Partially supported by Research grants GAUK 277/2001, GAUK 160/1999 and MSM 113200007. Received March 1, 2001 and in revised form October 12, 2001

Valdivia dual unit ball admits a projectional resolution. This question was formulated in [FGZ, Remark 2 on p. 224], later in [K3, Question 1] or in [K4, Question] 4.21]. Some partial positive results were given already in $[V2]$ for $C(K)$ spaces with K Valdivia and in [V3] for some other Banach spaces. In the present paper we give a counterexample.

Let us start with definitions.

Definition 1: Let X be a Banach space of the density $\kappa > \aleph_0$. A projectional resolution of the identity (PRI) on X is an indexed family $(P_\alpha \mid \omega \leq \alpha \leq \kappa)$ of projections on X with the following properties.

- (i) $P_{\omega} = 0, P_{\kappa} = \text{Id}_X;$
- (ii) $||P_{\alpha}|| = 1$ for $\omega < \alpha \leq \kappa;$
- (iii) dens $P_{\alpha}X \leq \text{card }\alpha$ for $\omega < \alpha \leq \kappa$;
- (iv) $P_{\alpha}P_{\beta} = P_{\beta}P_{\alpha} = P_{\alpha}$ for $\omega \leq \alpha \leq \beta \leq \kappa;$
- (v) $P_{\alpha}X = \overline{\bigcup_{\beta < \alpha} P_{\beta}X}$ if $\alpha \leq \kappa$ is limit.

The existence of a PRI is an isometric notion, due to the condition (ii). It may happen that a Banach space has a PRI with respect to one equivalent norm but has no PRI with respect to another equivalent norm $-$ see, e.g., [DGZ, p. 259], [FGZ, Examples 1 and 2] or [K3]. So it is useful to define, following [PY], an isomorphic analogue of PRI.

Definition 2: Let X be a Banach space of the density $\kappa > \aleph_0$. A **bounded projectional resolution** (BPR) on X is an indexed family $(P_\alpha \mid \omega \leq \alpha \leq \kappa)$ of projections on X which satisfies all properties of a PRI except for condition (ii), which is replaced by the following.

(ii') $\sup_{\omega \leq \alpha \leq \kappa} ||P_{\alpha}|| < \infty$.

The supremum is called the projection constant of the BPR.

Now we are going to define Valdivia compacta and related notions.

Definition 3:

(1) If Γ is a set, we put

$$
\Sigma(\Gamma) = \{ x \in \mathbb{R}^{\Gamma} \mid \{ \gamma \in \Gamma \mid x(\gamma) \neq 0 \} \text{ is countable} \}.
$$

Let K be a compact Hausdorff space.

- (2) We say that $A \subset K$ is a Σ -subset of K if there is a homeomorphic injection h of K into some \mathbb{R}^{Γ} such that $h(A) = h(K) \cap \Sigma(\Gamma)$.
- (3) K is called a **Corson compact space** if K is a Σ -subset of itself.
- (4) *K* is called a **Valdivia compact space** if K has a dense Σ -subset.

Before defining the Banach space analogues of these notions, let us fix the following concept.

Definition 4: Let X be a Banach space, $S \subset X^*$ and $C \geq 1$. We say that S is C-norming, if

$$
\frac{1}{C}||x|| \le \sup\{|\xi(x)|: \xi \in S \cap B_{X^*}\} \le ||x||
$$

for every $x \in X$. S is called **norming** if it is C-norming for some $C \geq 1$.

Let us remark that it follows from the Hahn-Banach separation theorem that a linear subspace $S \subset X^*$ is C-norming if and only if

$$
\frac{1}{C}B_{X^*} \subset \overline{S \cap B_{X^*}}^{w^*} \subset B_{X^*}.
$$

Definition 5:

- (1) Let X be a Banach space. We say that $S \subset X^*$ is a Σ -subspace of X^* if there is a linear one-to-one weak* continuous mapping $T: X^* \to \mathbb{R}^{\Gamma}$ such that $S = T^{-1}(\Sigma(\Gamma)).$
- (2) A Banach space X is called weakly Lindelöf determined (WLD) if X^* is a Σ -subspace of itself.
- (3) A Banach space X is called C-Plichko (where $C \geq 1$) if X^* has a Cnorming E-subspace. X is called **Plichko** if it is C-Plichko for some $C \geq 1$.

It follows from [V3] that any 1-Plichko space admits a PRI. In [FGZ, Lemma 2 it is proved that a Banach space X with density \aleph_1 admits a PRI if and only if it is 1-Plichko. Finally, by [K2], see [K4, Theorem 4.15], a Banach space X is 1-Plichko if and only if the dual unit ball (B_{X^*}, w^*) has a dense convex symmetric E-subset. Therefore X admits a PRI whenever (B_{X^*}, w^*) has a dense convex symmetric Σ -subset. We will show that convexity cannot be omitted.

2. Main result

Our main result is the following theorem.

THEOREM: There is a Banach space X, isomorphic to $C[0,\omega_1]$, which admits *no projectional resolution of the identity but whose dual unit ball is a Valdivia compactum.*

This theorem settles the isometric question of the existence of PRI. But the isomorphic one remains open since X has a PRI in some equivalent norm (as it is isomorphic to $C[0,\omega_1]$. This question and related problems will be discussed in the final section.

3. Auxilliary results

We begin with the following general lemma on convexity of certain functions.

LEMMA 1: Let X be a linear space, A a convex subset of X and $f: A \to \mathbb{R}$ *a function continuous on each segment in A such that* $|f|$ *is convex. Then the function* $F: A \times \mathbb{R} \to \mathbb{R}$ defined by $F(x, y) = |f(x)| + |y - f(x)|$ is convex.

Proof: We will prove the statement in several steps.

STEP 1: F is convex on $A \times \mathbb{R}$ if (and only if) it is convex on each segment. Hence, without loss of generality, we can assume that $X = \mathbb{R}$ and $A = [a, b]$ is a closed interval.

STEP 2: We will use the following elementary fact. Let $p < q < r$ be real numbers, h a continuous function on $[p, r]$ which is convex on $[p, q)$ and on $(q, r]$ and, moreover, $h'_{-}(q) \leq h'_{+}(q)$. Then h is convex on $[p, r]$.

STEP 3: The functions f^+ and f^- are convex on [a, b].

If $f \geq 0$ or $f \leq 0$ on the whole [a, b], then the claim is trivial. Otherwise there is, by convexity of $|f|$ and continuity of f, some $c \in (a, b)$ such that $f \leq 0$ on $[a, c]$ and $f \geq 0$ on $(c, b]$ (or vice versa). Then

$$
f^+(x) = \begin{cases} 0 & x \in [a, c) \\ |f(x)| & x \in [c, b] \end{cases} \text{ and } f^-(x) = \begin{cases} |f(x)| & x \in [a, c), \\ 0 & x \in [c, b]. \end{cases}
$$

Now, by Step 2 these functions are convex.

STEP 4: Let

$$
G^+ = \{(x, y) \in [a, b] \times \mathbb{R} : y \ge f(x)\}
$$

and

$$
G^- = \{(x, y) \in [a, b] \times \mathbb{R} : y \le f(x)\}.
$$

Then F is convex on each segment contained either in G^+ or in G^- .

On G^+ we have $F(x,y) = |f(x)| + y - f(x) = 2f^-(x) + y$. On the other set $F(x, y) = 2f^+(x) - y$. So the assertion follows by Step 3.

STEP 5: Let $[P, R]$ be a segment in $[a, b] \times \mathbb{R}$ such that there is $Q \in (P, R)$ with $[P,Q] \subset G^+$ and $(Q,R] \subset G^-$. Then F is convex on $[P,Q]$.

By Step 4 the function F is convex both on $[P,Q]$ and on $(Q, R]$. Further, put $F_1(x,y) = |f(x)|$ and $F_2(x,y) = |y - f(x)|$. We have $F_2(Q) = 0$, so F_2 has in Q a local minimum, hence the left-sided derivative of F_2 in Q in the direction $R - P$ is non-positive while the right-sided one is non-negative. The function F_1 is convex, hence the left-sided derivative of F_1 in Q in the direction $R-P$ is less than or equal to the right-sided one. Taking the sum and using Step 2 we can conclude that F is convex on $[P, R]$.

STEP 6: For any two points $P, R \in [a, b] \times \mathbb{R}$ there are finitely many points Q_1, \ldots, Q_k lying on the segment $[P, R]$ such that each of the segments $[P, Q_1]$, $[Q_1, Q_2], \ldots, [Q_k, R]$ lies either in G^+ or in G^- .

Put $\tilde{F}_2(x,y) = y - f(x)$. It is enough to show that $\phi: t \mapsto \tilde{F}_2(P+t(R-P))$ is piecewise monotone. To check this it suffices to observe that

$$
\phi'_{+}(t)=(r_2-p_2)-f'_{+}(p_1+t(r_1-p_1))(r_1-p_1)
$$

(where, of course, $P = (p_1, p_2)$ and $R = (r_1, r_2)$) is piecewise monotone as f'_{+} is piecewise monotone (cf. Step 3).

STEP 7: It follows from Step 5 and Step 6 that F is convex on each closed segment lying in $[a, b] \times \mathbb{R}$. Therefore that F is convex on $[a, b] \times \mathbb{R}$. This completes the proof. |

Now we fix some notation which we will use in the remaining lemmas of this section. By E we will denote the Banach space $C[0,\omega_1]$ equipped with the maxnorm, by M its dual space, represented by finite signed Radon measures on $[0, \omega_1]$ equipped with the norm of total variation and the weak* topology, and by B_M the unit ball of M. Finally, let $f: M \to \mathbb{R}$ be a fixed weak* continuous function such that $f(0) = 0$ and put

$$
A(f) = \{ \mu \in B_M : \mu(\{\omega_1\}) = f(\mu) \},
$$

\n
$$
B(f) = \{ \mu \in M : |\mu| [0, \omega_1) + |f(\mu)| + |\mu(\{\omega_1\}) - f(\mu)| \le 1 \}.
$$

LEMMA 2: For any $\mu \in M$ there is $\alpha < \omega_1$ such that $f(\mu) = f(\nu)$ whenever $\nu \in M$ is such that $\nu \upharpoonright [0, \alpha] = \mu \upharpoonright [0, \alpha]$ and $\nu(\alpha, \omega_1] = \mu(\alpha, \omega_1]$.

Proof. Let $\mu \in M$ be arbitrary. Then $f^{-1}(f(\mu))$ is a weak* G_{δ} set containing μ . Hence the statement follows easily from the definition of the weak* topology. **I**

LEMMA 3: There is some $\delta > 0$ such that $\delta B_M \subset B(f) \subset B_M$.

Proof: The inclusion $B(f) \subset B_M$ follows from the triangle inequality. Indeed, if $\mu \in B(f)$, then

$$
||\mu|| = |\mu|[0,\omega_1) + |\mu(\{\omega_1\})| \leq |\mu|[0,\omega_1) + |f(\mu)| + |\mu(\{\omega_1\}) - f(\mu)| \leq 1.
$$

Further, as f is weak* continuous, it is also norm-continuous, and so the function $\mu \mapsto ||\mu|| + 2|f(\mu)|$ is norm-continuous. Hence there is $\delta > 0$ such that $||\mu|| +$ $2|f(\mu)| \leq 1$ whenever $\|\mu\| \leq \delta$. Therefore for $\mu \in \delta B_M$ we have

$$
|\mu|[0,\omega_1)+|f(\mu)|+|\mu(\{\omega_1\})-f(\mu)|\leq ||\mu||+2|f(\mu)|\leq 1,
$$

thus $\mu \in B(f)$.

LEMMA 4: The set $B(f)$ is the weak^{*} closure of $A(f)$. Moreover, $A(f)$ is a *E*-subset of $B(f)$, so $B(f)$ is a Valdivia compactum.

Proof: It is clear from the definitions that $A(f) \subset B(f)$. Let us first prove that $A(f)$ is weak^{*} dense in $B(f)$. Let $\mu \in B(f)$ and $\alpha < \omega_1$ be the ordinal from Lemma 2. For $\gamma \in (\alpha, \omega_1)$ put

$$
\mu_{\gamma} = \mu \upharpoonright [0, \omega_1) + (\mu({\{\omega_1\}}) - f(\mu)) \cdot \delta_{\gamma} + f(\mu) \cdot \delta_{\omega_1}.
$$

It is clear that the net μ_{γ} weak* converges to μ . Further, $\|\mu_{\gamma}\| \leq 1$ by the definition of $B(f)$. Finally, by the choice of α we have $f(\mu_{\gamma}) = f(\mu) = \mu_{\gamma}(\{\omega_1\}),$ hence $\mu_{\gamma} \in A(f)$.

Next we will show that $B(f)$ is weak^{*} closed. Let μ_{τ} be a net of elements of $B(f)$ weak^{*} converging to some $\mu \in M$. Let $\alpha < \omega_1$ be such that $\mu \restriction (\alpha, \omega_1) = 0$. Then

$$
1 \geq \lim_{\tau} \inf(|\mu_{\tau}|[0,\omega_{1}) + |f(\mu_{\tau})| + |\mu_{\tau}(\{\omega_{1}\}) - f(\mu_{\tau})|)
$$

\n
$$
\geq \lim_{\tau} \inf |\mu_{\tau}|[0,\alpha] + \lim_{\tau} \inf (|\mu_{\tau}|(\alpha,\omega_{1}) + |f(\mu_{\tau})| + |\mu_{\tau}(\{\omega_{1}\}) - f(\mu_{\tau})|)
$$

\n
$$
\geq |\mu|[0,\alpha] + |f(\mu)| + \lim_{\tau} \inf (|\mu_{\tau}(\alpha,\omega_{1})| + |\mu_{\tau}(\{\omega_{1}\}) - f(\mu_{\tau})|)
$$

\n
$$
\geq |\mu|[0,\alpha] + |f(\mu)| + \lim_{\tau} \inf |\mu_{\tau}(\alpha,\omega_{1}) - f(\mu_{\tau})|
$$

\n
$$
= |\mu|[0,\alpha] + |f(\mu)| + |\mu(\alpha,\omega_{1}) - f(\mu)|
$$

\n
$$
= |\mu|[0,\omega_{1}) + |f(\mu)| + |\mu(\{\omega_{1}\}) - f(\mu)|,
$$

hence $\mu \in B(f)$. It follows that $B(f)$ is weak^{*} closed and therefore weak^{*} compact (due to Lemma 3).

Finally, to show that $A(f)$ is a Σ -subset of $B(f)$ let us consider the mapping $h: B(f) \to \mathbb{R}^{[-1,\omega_1]}$ defined by the formula

$$
h(\mu)(\alpha) = \begin{cases} \mu(\alpha, \omega_1) - f(\mu), & \alpha < \omega_1, \\ f(\mu), & \alpha = \omega_1. \end{cases}
$$

It is clear that the mapping h is weak* continuous and one-to-one, and that $A(f) = h^{-1}(\Sigma([-1,\omega_1])).$

LEMMA 5: Suppose that, moreover, f is odd and $|f|$ is convex. Then $B(f)$ is *convex and symmetric, so it is a dual unit ball of an equivalent norm on E. However,* $A(f)$ is convex if and only if f is affine on $B(f)$.

Proof: If f is odd, then $B(f)$ is clearly symmetric. If $|f|$ is convex, then $B(f)$ is convex by Lemma 1. Hence $B(f)$ is convex and symmetric. If f is affine on $B(f)$, then clearly $A(f)$ is convex. Conversely, if $A(f)$ is convex, then f is affine on $A(f)$ (as $f(\mu) = \mu({\{\omega_1\}})$ and $\mu \mapsto \mu({\{\omega_1\}})$ is affine on $A(f)$), and so it is affine on $B(f)$ by Lemma 4 due to weak* continuity of f.

4. Proof of the main result

Take, say, $f(\mu) = \mu({0})^3$ or $f(\mu) = \mu({0}) \cdot |\mu({0})|$. Then, due to Lemma 5, $B(f)$ is a dual unit ball of an equivalent norm $|\cdot|$ on E and it is Valdivia by Lemma 4. Moreover, $A(f)$ is a dense Σ -subset of $B(f)$ by Lemma 4 and it is not convex by Lemma 5. As $B(f)$ has a dense set of G_{δ} points, $A(f)$ is the only dense Σ -subset of $B(f)$. This follows from [K4, Corollary 1.12] or [K2, Lemma 4.2], or already from [K1, Lemma 2.3 and Proposition 2.4]. We recall here the simple argument for the sake of completeness.

Let A' be another dense Σ -subset of $B(f)$. Both A' and $A(f)$ are dense and countably compact, hence they contain all G_{δ} points of $B(f)$. Thus $A' \cap A(f)$ is dense in $B(f)$. Let $\mu \in A(f)$. Then $\mu \in A' \cap A(f)$, hence there is a sequence $\mu_n \in A' \cap A(f)$ such that $\mu_n \to \mu$. (This follows from the well-known fact that $\Sigma(\Gamma)$ is a Fréchet-Urysohn space; see [N, Theorem 2.1] or [K4, Lemma 1.6].) As A' is clearly sequentially closed, we have $\mu \in A'$. Therefore $A(f) \subset A'$. By interchanging the roles of A' and $A(f)$ we get $A' = A(f)$.

So $B(f)$ has no convex dense Σ -subset, hence $(E, |\cdot|)$ is not 1-Plichko. Finally, by [FGZ, Lemma 2], this space has no PRI. This completes the proof.

5. Final **remarks and** open problems

We proved that there is a Banach space with Valdivia dual unit ball without PRI. But as this space is isomorphic to $C[0, \omega_1]$, it has a BPR. In fact, it is Plichko. So the following question seems to be interesting.

QUESTION 1: IS *there a Banach* space *with Valdivia dual unit ball which admits no bounded projectional resolution?*

As ℓ_1 -sums preserve Banach spaces with Valdivia dual unit ball (this follows from [K1, Theorem 4.1], see also [K4, Theorem 3.29]) but not Banach spaces with a BPR, see [PY, Section 7], the following question seems to be a natural step to answer Question 1.

QUESTION 2: *Let C > 1 be arbitrary. Is* there a *Banach space X with Valdivia dual unit ball such* that *any bounded projectional resolution on X has projection constant greater than C?*

One can ask whether we can get such examples by a refinement of our construction. By some elementary computations one can prove the following.

THEOREM[']: There is a Banach space X and $C > 1$ with the following properties.

- (1) *X* is isomorphic to the space $C[0, \omega_1]$.
- (2) The dual unit ball of X is a Valdivia compactum in its weak* *topology*.
- (3) *Any bounded projectional resolution in X has projection constant greater than C.*
- (4) *X admits a bounded projectional resolution with projection constant* at *most 3.*

We can take $X = (E, |\cdot|)$ where $B_{X^*} = B(f)$ with $f(\mu) = |\mu({0})\rangle \cdot \mu({0})$. and any $C < (15-3\sqrt{5})/8$. It is possible that by choosing another function f we could obtain a better C. However, it can be easily checked that our method necessarily yields $C < 3$.

Another question is whether an analogous example can be found within $C(K)$ spaces.

QUESTION 3: Is there a compact Hausdorff space K such that $C(K)$ admits no *PRI but the dual unit ball of C(K) is a Valdivia compactum?*

If such a K exists, it cannot have a dense set of G_{δ} points — see [K2, Theorem 4.10] or [K4, Theorem 5.3]. Therefore none of our eounterexamples is isometric to a $C(K)$ space. (Our spaces are isomorphic to $C[0, \omega_1]$, hence they are Asplund and thus K would be scattered [HHZ, Theorem 296].)

ACKNOWLEDGEMENT: The author is grateful to Matias Raja and Luděk Zajíček for helpful discussions on Lemma 1.

References

- $[AL]$ D. Amir and J. Lindenstrauss, *The structure of weakly compact sets in Banach spaces,* Annals of Mathematics 88 (1968), 35-46.
- [AMN] S. Argyros, S. Mercourakis and S. Negrepontis, *Functional analytic properties of Corson compact spaces,* Studia Mathematica 89 (1988), 197-229.
- **[DG]** R. Deville and G. Godefroy, *Some applications of projective resolutions of identity, Proceedings of the London Mathematical Society 67 (1993), 183–199.*
- **[DGZ]** R. Deville, G. Godefroy and V. Zizler, *Smoothness and Renormings in Banach Spaces,* Pitman Monographs 64, Longman Sci. Tech., Harlow, 1993.
- **[FGZ]** M. Fabian, G. Godefroy and V. Zizler, *A note on Asplund generated Banach spaces,* Bulletin de l'Acad~mie Polonaise des Sciences 47 (1999), 221-230.
- **[HHZ]** P. Habala, P. Hájek and V. Zizler, *Introduction to Banach Spaces*, Lecture notes, Matfyzpress, Prague, 1996.
- **[K1]** O. Kalenda, *Continuous images and other topological properties of Valdivia compacta, Fundamenta Mathematicae* 162 (1999), 181-192.
- **[K2]** O. Kalenda, *A characterization of Valdivia compact spaces,* Collectanea Mathematica 51 (2000), 59-81.
- **[K3]** O. Kalenda, *Valdivia compacta and equivalent norms,* Studia Mathematica 138 (2000), 179-191.
- **[K4]** O. Kalenda, *Valdivia compact spaces in topology* and *Banach space theory,* Extracta Mathematicae 15 (2000), 1-85.
- **[KS]** O. Kalenda, *Note on Markushevich bases in subspaces* and *quotients of Banach* spaces, Bulletin de l'Académie Polonaise des Sciences, to appear.
- **[L1]** 3. Lindenstrauss, *On reflexive spaces having the metric approximation property,* Israel Journal of Mathematics 3 (1965), 199-204.
- **[L2]** J. Lindenstrauss, *On nonseparable reflexive Banach spaces,* Bulletin of the American Mathematical Society 72 (1966), 967-970.
- $[N]$ N. Noble, *The continuity of functions on Cartesian products,* Transactions of the American Mathematical Society 149 (1970), 187-198.
- **[PY]** A. N. Plichko and D. Yost, *Complemented and uncomplemented subspaces of Banach spaces,* Extracta Mathematicae 15 (2000), 335-371.
- $[V1]$ M. Valdivia, *Resolutions of the identity in certain Banach spaces,* Collectanea Mathematica 39 (1988), 127-140.
- **IV2]** M. Valdivia, *Projective resolutions of* the *identity in C(K) spaces,* Archiv der Mathematik 54 (1990), 493-498.
- **IV3]** M. Valdivia, *Simultaneous resolutions of the identity operator in normed spaces,* Collectanea Mathematica 42 (1991), 265-285.