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ABSTRACT 

We give an example of a Banach space which admits no projectional 

resolution of the identity but  whose dual unit ball in weak* topology 

is a Valdivia compact. This answers a question asked by M. Fabian, 

G. Godefroy and V. Zizler. 

1. I n t r o d u c t i o n  

Projectional resolutions of the identity are a powerful tool in studying the struc- 

ture of non-separable Banach spaces. They were introduced by J. Lindenstrauss 

[L1], [L2] in the 1960s. Their importance became clear after the famous paper 

[AL], where it is proved that each weakly compactly generated Banach space 

admits a projectional resolution. Later, this result was extended to several larger 

classes of spaces. These classes can be defined by topological properties of the 

dual unit ball equipped with the weak* topology. So, if the dual unit ball of X 

is an Eberlein compactum or, more generally, a Corson compactum, X admits 

a projectional resolution [V1], [V3]. Since [AMN], a generalization of Corson 

compacta has been studied [V2], IV3]; this class was given the name of Valdivia 

compacta in [DG]. The natural question arose - -  whether a Banach space with 
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Valdivia dual  unit  ball admi t s  a project ional  resolution. This  question was formu- 

la ted in [FGZ, R e m a r k  2 on p. 224], later  in IN3, Quest ion 1] or in [K4, Quest ion 

4.21]. Some par t ia l  posit ive results were given a l ready in [V2] for C(K)  spaces 

with K Valdivia and in [V3] for some other  Banach  spaces. In the present  paper  

we give a counterexample .  

Let  us s ta r t  with definitions. 

Definition 1: Let X be a Banach  space of the densi ty ~ > R0. A p r o j e c t i o n a l  

r e s o l u t i o n  o f  t h e  i d e n t i t y  (PRI)  on X is an indexed family (P~ I w < a < ~) 

of project ions on X with the following propert ies.  

(i) P~ = O, P~ = I d x ;  

(ii) ][P~[] = 1 for Lz < a _< ,~; 

(iii) dens P,~X <_ card a for w < a _< ,~; 

(iv) PaPa = P~P~ = P~ for w < a < / 3  < ~; 

(v) P a X  = U~<a  Po X if a < ~ is limit. 

The  existence of a P R I  is an isometric notion, due to the condit ion (ii). I t  m a y  

happen  tha t  a Banach  space has a P R I  with  respect  to one equivalent norm but  

has no P R I  with respect  to another  equivalent norm - -  see, e.g., [DGZ, p. 259], 

[FGZ, Examples  1 and 2] or [K3]. So it is useful to define, following [PY], an 

isomorphic analogue of PRI .  

Definition 2: Let X be a Banach  space of the density t~ > R0. A b o u n d e d  

p r o j e c t i o n a l  r e s o l u t i o n  (BPR)  on X is an indexed family (P~ I w < a < to) of 

project ions on X which satisfies all propert ies  of a P R I  except  for condit ion (ii), 

which is replaced by the following. 

(ii') sup~o<~< ~ ]IP~]] < oo. 

The  s u p r e m u m  is called the  p r o j e c t i o n  c o n s t a n t  of the BPR.  

Now we are going to define Valdivia compac t a  and related notions. 

Definition 3: 

(1) If  F is a set, we put  

s ( r )  = {x • R r I • r I # 0} is countable}. 

Let K be a compac t  Hausdorff  space. 

(2) We say tha t  A C K is a ~ - s u b s e t  o f  K if there is a homeomorphic  injection 

h of K into some R r such t ha t  h(A) = h(K)  n ~(F) .  

(3) K is called a C o r s o n  c o m p a c t  s p a c e  if K is a ~-subse t  of itself. 

(4) Ix" is called a V a l d i v i a  c o m p a c t  s p a c e  if K has a dense Z-subset .  
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Before defining the Banach space analogues of these notions, let us fix the 

following concept. 

Definition 4: Let X be a Banach space, S C X* and C > 1. We say that  S is 

C - n o r m i n g ,  if 

cllxll < sup{i~(x)l: ~ e n B x . }  <_ Ilxll s 

for every x E x .  S is called n o r m i n g  if it is C-norming for some C _~ 1. 

Let us remark that  it follows from the Hahn-Banach separation theorem that  

a linear subspace S C X* is C-norming if and only if 

1 - - ~ U *  
B x .  c S n B x .  c B x . .  

Definition 5: 

(1) Let X be a Banach space. We say that  S C X* is a E - s u b s p a c e  of X* if 

there is a linear one-to-one weak* continuous mapping T: X* -+ SI r such 

that  S = T - I ( E ( F ) ) .  

(2) A Banach space X is called w e a k l y  L i n d e l h f  d e t e r m i n e d  (WLD) if X* 

is a E-subspace of itself. 

(3) A Banach space X is called C - P l i c h k o  (where C _> 1) if X* has a C- 

norming E-subspace. X is called P l i chko  if it is C-Plichko for some C > 1. 

It  follows from [V3] that  any 1-Plichko space admits a PRI. In [FGZ, Lenmla 

2] it is proved that  a Banach space X with density R1 admits a PRI  if and only if 

it is 1-Plichko. Finally, by [K2], see [K4, Theorem 4.15], a Banach space X is 1- 

Plichko if and only if the dual unit ball ( B x . ,  w*) has a dense convex symmetric 

E-subset. Therefore X admits a PRI  whenever (Bx*,w*)  has a dense convex 

symmetric E-subset. We will show that  convexity cannot be omitted. 

2. M a i n  result  

Our main result is the following theorem. 

THEOREM: There is a Banach space X ,  isomorphic to C[0,~1], which admits 

no projectional resolution of the identity but whose dual unit ball is a Valdivia 

compactum. 

This theorem settles the isometric question of the existence of PRI. But the 

isomorphic one remains open since X has a PRI  in some equivalent norm (as it 

is isomorphic to C[O, wl]). This question and related problems will be discussed 

in the final section. 
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3. A u x i l l i a r y  r e s u l t s  

We begin with the following general lemma on convexity of certain functions. 

LEMMA 1: Let  X be a linear space, A a convex subset o f  X and f :  A -~ R 

a function continuous on each segment  in A such that If[ is convex. Then the 

function F: A × ]~ -4 ]~ defined by F ( x , y )  = If(x)l  + [y - f (x ) l  is c o n v e x .  

Proof: We will prove the s ta tement  in several steps. 

STEP 1: F is convex on A × ~ if (and only if) it is convex on each segment. 

Hence, without  loss of generality, we can assume tha t  X -- R and A = [a, b] is a 

closed interval. 

STEP 2: We will use the following elementary fact. Let  p < q < r be real 

numbers,  h a continuous function on L o, r] which is convex on [p, q) and on (q, r] 

and, moreover, h~(q) <_ h'+(q). Then  h is convex on Lo, r]. 

STEP 3: The  functions f +  and f -  are convex on [a, b]. 

If f > 0 or f _< 0 on the whole [a, b], then the claim is trivial. Otherwise there 

is, by convexity of Ifl and continuity of f ,  some c • (a, b) such tha t  f ~ 0 on 

[a, c) and f ~ 0 on (c, b] (or vice versa). Then  

I f (x) l  x • [c,b] and f - ( x )  = x • [c,b]. 

Now, by Step 2 these functions are convex. 

STEP 4: Le t  

and 

G + = {(x ,y)  • [a,b] × R: y ~ f ( x ) }  

G -  = {(x ,y)  • [a,b] × R: y < f (x )} .  

Then  F is convex on each segment contained either in G + or in G - .  

On G + we have F ( x , y )  = I f (x) l  + y - f ( x )  -- 2 f - ( x )  + y. On the other  set 

F ( x ,  y) = 2 f + ( x )  - y. So the assertion follows by Step 3. 

STEP 5: Let [P, R] be a segment in [a, b] × ]R such tha t  there is Q E (P, R) with 

[P, Q) c G + and (Q, R] c G - .  Then  F is convex on [P, Q]. 

By Step 4 the function F is convex bo th  on [P, Q) and on (Q, R]. Further ,  put  

F l ( x , y )  -- If(x)l  and F2(x ,y )  = lY - f ( x ) l .  We have F2(Q) -- 0, so F2 has in 

Q a local minimum, hence the left-sided derivative of F2 in Q in the direction 

R - P is non-positive while the right-sided one is non-negative. The function F1 
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is convex, hence the left-sided derivative of F1 in Q in the direction R - P is less 

than or equal to the right-sided one. Taking the sum and using Step 2 we can 

conclude that F is convex on [P, R]. 

STEP 6: For any two points P, R E [a, b] x 1R there are finitely many points 

Q1 . . . . .  Qk lying on the segment [P, R] such that each of the segments [P, Q1], 

[Q1, Q2] , . . . ,  [Qk, R] lies either in G + or in G - .  

Put  F2(x,y) = y -  f (x) .  It is enough to show that  0: t ~ F 2 ( P + t ( R -  P)) is 

piecewise monotone. To check this it suffices to observe that 

0~_ (t) --- (r2 - P2) - Y+(Pl q- t (r l  - p l ) ) ( r l  - Pl) 

(where, of course, P = (Pl,P2) and R = (rl,  r2)) is piecewise monotone as f~ is 

piecewise monotone (cf. Step 3). 

STEP 7": It follows from Step 5 and Step 6 that  F is convex on each closed 

segment lying in [a, b] × R. Therefore that F is convex on [a, b] x R. This 

completes the proof. | 

Now we fix some notation which we will use in the remaining lemmas of this 

section. By E we will denote the Banach space C[0, wl] equipped with the max- 

norm, by M its dual space, represented by finite signed Radon measures on [0, Wl] 

equipped with the norm of total variation and the weak* topology, and by BM 

the unit ball of M. Finally, let f :  M -+ R be a fixed weak* continuous function 

such that f(0)  = 0 and put 

A( f )  -- {# e BM: p({wt}) ---- f (p)} ,  

B(I )  = {# E M: I#[[O, wi) + if(#)[ + I#({col}) -- .f(t~)l _< 1}. 

LEMMA 2: For any # E M there is a < Wl such that f (#)  = f (v )  whenever 

P e M is such tha t  p F [0, oz] = ~t [ [0, oz] a n d / / ( o r ,  COl] = / t ( o z ,  COl]. 

Proof." Let p E M be arbitrary. Then f - l ( f ( # ) )  is a weak* G5 set containing 

p. Hence the statement follows easily from the definition of the weak* topology. 

I 

LEMMA 3: There is some 6 > 0 such that 5BM C B( f )  C BM. 

Proof." The inclusion B( f )  C BM follows from the triangle inequality. Indeed, 

if # E B( f ) ,  then 

II~ll = I~1[0,~1) -4-I~((~))1 ~ I¢~1[o,~,) + If(/z)1-4-I~({coi}) - f(~)l  ~ 1. 
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Further ,  as f is weak* continuous, it is also norm-continuous,  and so the function 

P ~-~ ll#ll + 21f(p)l is norm-continuous.  Hence there is ~ > 0 such tha t  IIp]l + 

21f(#)l < 1 whenever IIPl] -< (~. Therefore for # E 5BM we have 

IPl[0,Wl) + If(~)l + Its({w1}) - f(tz)l --- II~ll + 21f(~)l _< 1, 

thus tt • B ( f ) .  II 

LEMMA 4: The set B(f)  is the weak* closure of A(f). Moreover, A(f) is a 
E-subset of B(f),  so B(f)  is a Valdivia compactum. 

Proo£" It  is clear from the definitions tha t  A(f) C B(f). Let us first prove tha t  

A(f) is weak* dense in B(f). Let # E B(f) and a < Wl be the ordinal from 

Lemma  2. For 7 • (a,  wl) put  

~.,/ = ]_t I [0,(M1) -t- (~({CM1}) -- f ( ~ ) ) "  (~'r + f ( v ) "  (~ol • 

It is clear tha t  the net p7 weak* converges to g. Further,  11#71] -< 1 by the 

definition of U( f ) .  Finally, by the choice of ~ we have f(u~)  = f (~ )  = ~ ( { ~ 1 } ) ,  
hence #7 • A(f). 

Next  we will show tha t  B(f) is weak* closed. Let  #~ be a net of elements of 

B(f)  weak* converging to some g • M. Let a < ~1 be such tha t  # I ( a , ~ l )  -- O. 

Then  

1 _  

>_ 

_> 

liminf(l#~l[0, ~D + I/(#~)1 + I#~({~o~}) - f (#~) l )  

l irninf lp~}[0, a] + limrinf(l#~l(a, ~1)  + If(~t~-)l + I]-t~- ({031}) -- f ( t t ~ ) l )  

M[0, ~] + If(~)l + liminf(ltt~(a, ~ol)1 + Ilz~({~l}) - f ( ~ ) l )  

I~1[0, ~] + If(~)l + lim inf [#~ (a, Wl] - f(~,)l 

I~1[0, ~] + If(~)l + [#(a,~Cl] - f(~)l 

= I~1[0,~) + If(tt)l + Itt({~l}) - f (# ) l ,  

hence # E B(f). It follows that  B(f) is weak* closed and therefore weak* 

compact  (due to Lemma 3). 

Finally, to show tha t  A(f) is a E-subset of B(f) let us consider the mapping 

h: B(f)  ~ R [-1'wl] defined by the formula 

f #(o~,w,] - f ( # ) ,  o~ < Wl, 
h (# ) (a )  -- [ f ( # ) ,  c~ : wl. 

It is clear tha t  the mapping h is weak* continuous and one-to-one, and tha t  

A(f) = h - ~ ( E ( [ - 1 , ~ ] ) ) .  | 
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LEMMA 5: Suppose that, moreover, f is odd and If[ is convex. Then B ( f )  is 

convex and symmetric, so it is a dual unit ball of an equivalent norm on E. 

However, A( f )  is convex if and only if f is affine on B( f ) .  

Prook If f is odd, then B( f )  is clearly symmetric. If ]fl is convex, then B ( f )  

is convex by Lemma 1. Hence B( f )  is convex and symmetric. If ] is affine on 

B(f ) ,  then clearly A( f )  is convex. Conversely, if A( f )  is convex, then f is affine 

on A( f )  (as f (#)  = p({C.dl} ) and p ~-~ #({wl}) is affine on A(f) ) ,  and so it is 

affine on B ( f )  by Lemma 4 due to weak* continuity of f .  I 

4. P r o o f  o f  t h e  m a i n  result  

Take, say, f (# )  = #({0}) 3 or f (#)  = #({0}).  I#({0})[. Then, due to Lemma 5, 

B( f )  is a dual unit ball of an equivalent norm [ • ] on E and it is Valdivia by 

Lemma 4. Moreover, A( f )  is a dense E-subset of B( f )  by Lemma 4 and it is 

not convex by Lemma 5. As B( f )  has a dense set of G~ points, A( f )  is the only 

dense E-subset of B( f ) .  This follows from IN4, Corollary 1.12] or [K2, Lemma 

4.2], or already from [K1, Lemma 2.3 and Proposition 2.4]. We recall here the 

simple argument for the sake of completeness. 

Let A' be another dense E-subset of B(f ) .  Both A' and A( f )  are dense and 

countably compact, hence they contain all G~ points of B(f ) .  Thus A t n A( f )  

is dense in B( f ) .  Let # E A(f ) .  Then p E A t M A(f) ,  hence there is a sequence 

#~ E A t N A( f )  such that #n --+ P. (This follows from the well-known fact that 

E(F) is a Fr~chet-Urysohn space; see [N, Theorem 2.1] or [K4, Lemma 1.6].) As 

A t is clearly sequentially closed, we have /L E A t. Therefore A( f )  C A t. By 

interchanging the roles of A t and A( f )  we get A' = A(f) .  

So B( f )  has no convex dense E-subset, hence (E, I" [) is not 1-Plichko. Finally, 

by [FGZ, Lemma 2], this space has no PRI. This completes the proof. 

5. F ina l  remarks  and o p e n  p r o b l e m s  

We proved that  there is a Banach space with Valdivia dual unit ball without PRI. 

But as this space is isomorphic to C[0, wl], it has a BPR. In fact, it is Plichko. 

So the following question seems to be interesting. 

QUESTION 1: IS there a Banach space with Valdivia dual unit ball which admits 

no bounded projectional resolution? 

As £1-sums preserve Banach spaces with Valdivia dual unit ball (this follows 

from [K1, Theorem 4.1], see also [K4, Theorem 3.29]) but not Banach spaces with 
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a BPR, see [PY, Section 7], the following question seems to be a natural step to 

answer Question 1. 

QUESTION 2: Let C > 1 be arbitrary. Is there a Banach space X with Valdivia 

dual unit ball such that any bounded projectional resolution on X has projection 

constant greater than C? 

One can ask whether we can get such examples by a refinement of our 

construction. By some elementary computations one can prove the following. 

THEOREM1: There is a Banach space X and C > 1 with the following properties. 

(1) X is isomorphic to the space C[0, a;1]. 

(2) The dual unit ball of  X is a Valdivia compactum in its weak* topology. 

(3) Any  bounded projectional resolution in X has projection constant greater 

than C. 

(4) X admits a bounded projectional resolution with projection constant at 

most  3. 

We can take X = (E, l" l) where Bx* = B ( f )  with f (p )  = IP({0})[. p({0}) 

and any C < (15 - 3v/5)/8. It is possible that by choosing another function f 

we could obtain a better C. However, it can be easily checked that our method 

necessarily yields C < 3. 

Another question is whether an analogous example can be found within C ( K )  

spaces. 

QUESTION 3: Is there a compact Hausdorff space K such that C ( K )  admits no 

P R I  but the dual unit ball of  C ( K )  is a Valdivia compactum? 

If such a K exists, it cannot have a dense set of G5 points - -  see [K2, Theorem 

4.10] or [K4, Theorem 5.3]. Therefore none of our eounterexamples is isometric 

to a C ( K )  space. (Our spaces are isomorphic to C[0, wl], hence they are Asplund 

and thus K would be scattered [HHZ, Theorem 296].) 
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